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Context & Motivation
The Deep Carbon Cycle plays an important part in the long term climatic trends on Earth and the carbon dioxide phase diagram at geological conditions
is key in the understanding of this cycle. The PHYSIX team studied cinematic aspects of phase transition between polymeric and molecular CO2
phases through ab initio molecular dynamics, using DFT-PBE to compute forces [1]. However, the computational power required to carry out such
simulations motivated the development of machine-learned potential energy surfaces (ML-PES) that could be used as force fields for large-scale
simulations.

1. Local Chemical Environment Representation
So as to efficiently train a ML model, one needs to represent a chemical environment in
a scalable, complete and unique way using descriptors which are differentiable
and invariant to basic symmetry operations and permutations. SOAP descriptors
[2] were used, allowing an arbitrary degree of accuracy with physically inspired and
easy-to-tune parameters.

2. Neural Network Architecture
a. State of the art architecture: High-dimensional NN (HD-NN) [3]
Within the HD-NN architecture, a unique atomic-NN is created for each chemical species. It
predicts the atomic contribution of every atom of this species which are then summed to predict the
total energy of the system.
b. Proposed architecture: Interaction NN
We proposed to further subdivide the atomic-NNs in pair interaction contributions, taking
advantage of the SOAP vectors structure. This more constrained architecture yields better accuracy
with and equivalent model complexity and scales well with the number of species.

Figure 1: Schematic representation of the atomic-NN (left), HD-NN (middle) and interaction NN (right)

c. Algorithm Overview
A pre-processing of the SOAP vectors consisting in a PCA, standardizations before and after the
PCA, and a re-normalization of the energies to [−Npart; Npart] is defined for each species or
interaction type. The Adam optimizer with early-stopping is used for training.

3. Energy predictions

Figure 2: Predicted VS target energy (left) and learning
curve (right) of HD-NN with full pre-processing (d=10
Å, T=3000 K).

The energy rescaling yields good prediction ac-
curacy for all the energy range and over-fitting is
avoided by using early-stopping as a regularizer
(Figure 2).
Architecture d T (K) DFT std RMSE

(Å) (eV/atom) (eV/atom)
HD-NN 10.0 3000 3.1e-02 7.9e-03
(no pre-process.) (± 1.4e-03)
HD-NN 10.0 3000 3.1e-02 3.8e-03

(± 2.1e-04)
HD-NN 10.0, 9.8, 3000 1.2e-01 2.5e-02

9.6 & 9.35 (± 1.8e-03)
Interaction NN 10.0 3000 3.1e-02 3.4e-03

(± 4.2e-04)

Table 1: Results of 5-folds cross-validation for different
architectures and polymeric CO2 conditions.

The proposed pre-processing scheme addresses
the low compacity of SOAP descriptors while
significantly increasing prediction accuracy. The
developed interaction-NN yields slightly better
prediction accuracy than the HD-NN (Table 1).

4. Validation of PES quality with Monte Carlo simulations
Monte Carlo (MC) simulations were performed using the HD-NN to further evaluate the quality of the PES by comparing the radial distribution functions
generated to the ones of the original dataset (ab initio simulations). Figure 3 demonstrates that the MC simulations generate energies and radial
distributions very close to the original ones and manage to preserve the molecular structure of the system. Artificial minima however
appear in the CO radial pair distribution functions, evidencing instabilities of the fitted PES.

Figure 3: Energy (left) and radial distribution functions of MC simulations (from left to right: gCC(r), gOO(r) and gCO(r)). For each simulation, 100,000 “all-particles” MC steps
were performed with a maximal 0.006 Å step-size. The HD-NN was used to compute the energies.

Conclusions and Future Work
The HD-NN architecture was compared to the Interaction NN, which appears to return slightly better
prediction accuracies on specific datasets. Besides, MC simulations suggest that the quality of the
prediction is very sensitive to the similarity between the studied configuration and the train set. An
iterative training could be implemented, where the NN re-training of the model is performed on
the fly, during MC or MD simulations, on generated configurations with low-fidelity NN predictions.
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