Plasma-Enhanced Atomic Layer Deposition of NiCoO$_4$ for Photoanode Protection

Elias Z. Stuttz1,2, L. Chen3, I. D. Sharp1, J. W. Ager1 & A. Fontcuberta i Morral1

1Laboratoire des Matériaux Semiconducteurs, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
2Joint Center for Artificial Photosynthesis, 3Materiale Sciences Division, 4Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Introduction

Solar-driven water-splitting is a renewable technology for sunlight energy harvesting and H$_2$ production. Energy is stored in simple chemical bonds in H$_2$ and O$_2$ molecules by using photogenerated charge carriers to reduce and oxidize water, respectively, at (photo)electrode/electrolyte interfaces. Two approaches for designing stable and efficient photoanodes are using stable but typically inefficient semiconductors or efficient but unstable n-type semiconductors coated with a protective hole-permeable p-type transparent conductive material (p-TCM). Sputtered NiCoO$_4$ has already been studied as a p-TCM on silicon and InP photoanodes[1]. This project aims to protect and optimize silicon and GaAs photoanodes with NiCoO$_4$ deposited with Plasma-Enhanced Atomic Layer Deposition (PE-ALD).

Figure 1: Schematic of the band diagram of a photoanode, illuminated from the right, consisting of a n-type absorber (left) protected with a p-TCM (center). Red: Conduction Band, Blue: Valence Band, Dotted line: quasi-Fermi levels, yellow: photon with $h\nu \geq E_g$.

Figure 2: (left) Process flow for the deposition of nickel cobalt oxide with PE-ALD. (center) Proposed mechanism for the deposition of the first layer cobalt (or nickel) layer (right) Proposed mechanism for the deposition of subsequent cobalt or nickel layers. Precursors are NiCP$_2$ and CoCP$_2$.

Figure 3: Influence of plasma duration after cobalt precursor exposure on (left) optical and electrical properties and (center) stoichiometry. Horizontal dashed line is the stoichiometric composition, reached by depositing 3 Cobalt cycles per Nickel cycle instead of 2. Constant Co:Ni plasma duration ratio. (right) X-Ray Photoelectron Spectroscopy (XPS) spectrum of Cobalt 2p$_{3/2}$ and Nickel 2p$_{3/2}$ peaks.

Conclusion

1. The crystalline structure, chemical composition, optical properties, electrical properties and electronic band structure of NiCoO$_4$ deposited with PE-ALD under various conditions was studied.
2. Stable n-Si/p-NiCoO$_4$ photoanodes with very low onset voltage have been produced and optimized. ALD produces electrodes with better heterojunction but worse stability than sputtering (see [1]).
3. Fabrication of stable n-GaAs/p-NiCoO$_4$ photoanodes has been attempted.

Table 1: Summary of photoanode performance.

<table>
<thead>
<tr>
<th>Photocatalyst</th>
<th>Current Density [mA/cm2]</th>
<th>Voltage [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Si/NiCoO$_4$</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>n-GaAs/NiCoO$_4$</td>
<td>0.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Figure 4: Wide-Angle X-Ray Scattering (WAXS) spectra of n-Si/NiCoO$_4$ (left) and n-GaAs/NiCoO$_4$ (right). Peaks marked with a star likely do not belong to the sample; indexed peaks belong to NiCoO$_4$. Data collected at SSSL beamline 11-3 at SLAC National Accelerator Laboratory.

Figure 5: Cyclic Voltammetry scans (9 cycles) of n-Si and p$^+$-Si protected with two optimized layers of NiCoO$_4$ of 30nm thickness.

Figure 6: 64 h stability test of n-Si/NiCoO$_4$ heterojunction photoanode. The protective layer is not etched away.

Figure 7: (left) Cyclic Voltammetry (CV) scans (10 cycles) of n-GaAs protected with 30 nm NiCoO$_4$. (right) Atomic Force Microscope image of the electrode surface before CV.

Figure 8: Cyclic Voltammetry scans (9 cycles) of n-GaAs protected with a 1.4 nm layer of SiO$_2$ and 30 nm NiCoO$_4$.

Silicon photoanodes

GaAs photoanodes

Reference

Acknowledgements

I would like to thank everyone mentioned in the title in this paper, especially Ms. Lin for her help, and others involved during this project. Furthermore, I would like to thank Dr.2, Karen II Schullin, Vincent, M., and Michel Fontcuberta for their help on various conditions from the SLAC National Acceleration Laboratory, the National Institute for Materials Science in Japan, the University of California, the National Center for Artificial Photosynthesis, and the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231, the Joint Center for Artificial Photosynthesis, supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy under Contract No. DE-AC02-05CH11231.