Energy Harvesting by a Flapping Flag

Context and Objectives

A plate (tipically a "flag") loaded by an axial flow is subjected to a fluid-structure instability as the incoming flow velocity is increased. When clamped-free boundary conditions are used, the system leaves the stable straight state for limit cycle oscillations. This is the so-called flutter instability. If it can be highly destructive, we can also hope for harvesting - part of - the energy provided to the plate by the fluid. Different harvesting strategy are currently under investigation: (i) using the displacement of the flag through induction or (ii) using the curvature of the flag through piezoelectric patches. A third strategy based on a rotating flagpole is numerically studied in the present work.

Model and Methods

1) Solid model : inextensible Euler Bernoulli beam with free trailing edge
\[
\frac{\partial^2 \mathbf{x}}{\partial t^2} = \frac{\partial}{\partial s} \left[M^* \mathbf{f}_T \mathbf{e}_n - \frac{\partial^2 \theta}{\partial s^2} \mathbf{e}_n \right] + M^* \mathbf{f}_{\text{fluid}} \mathbf{e}_n
\]

at the flagpole :
\[
\frac{\partial^2 \theta_0}{\partial t^2} + N_1 \frac{\partial \theta_0}{\partial t} + \Omega_0^2 \theta_0 = N_3 \frac{\partial \theta}{\partial s} \bigg|_{s=0}
\]

2) Fluid model : a resistive term + Lighthill’s Large Amplitude Elongated Body Theory (LAEBT)
\[
f_{\text{fluid}} = -\frac{1}{2} C_d u_n |u_n| - m_a H^* \left(\frac{\partial u_n}{\partial t} - \frac{\partial}{\partial s} (u_n u_\tau) + \frac{1}{2} \frac{\partial \theta}{\partial s} \right)
\]

3) A set of non-dimensional numbers

Flag parameters :
\[
M^* = \frac{L^2}{\mu}, \quad H^* = \frac{H}{L}, \quad u^* = \frac{U^*}{U},
\]

Flagpole parameters :
\[
N_1 = \frac{CL}{U^*}, \quad N_0 = \sqrt{\frac{K^f L^2}{U^2}}, \quad N_3 = \frac{BL}{U^2 L^2} \mu L^2 \mu
\]

damping (harvesting) natural frequency coupling

Some results

1) A frequency lock-in phenomenon is observed, due to the coupling of an unstable oscillator (the flag) and a stable one (the flagpole). The harvesting efficiency is enhanced under lock-in conditions.

Harvesting efficiency :
\[
\eta = \frac{\text{extracted power}}{\text{power of the wind passing through a section } AH}
\]

\[
\eta = \frac{N_1}{M^* U^4} N_0 \frac{\langle \dot{\theta}_0^2 \rangle}{A} \times 10^{-4}
\]

2) Some flags with non-homogeneous material or geometrical properties were tested. For example, we considered the effect of adding a localized mass (modeled as a gaussian) at some location \(s_0 \) along the flag. If the mass is located around the trailing edge, the energy harvesting efficiency can be significantly improved.

Conclusion

The occurrence and the practical interest of a lock-in phenomenon was shown. Moreover, an optimization of the harvesting efficiency (for \(M^*, U^*, H^* \) fixed) was performed, showing that our strategy leads to efficiencies slightly inferior to what is obtained with a piezoelectric based strategy. Besides, we proposed a simple way of enhancing the efficiency by adding a localized mass at the trailing edge of the flag. The technical simplicity of the flagpole based strategy compared to the other strategies should inexcitable further work on this particular topic.

Author : Johann Moulin

Supervisors : Sébastien Michelin (LadHyX) François Gallaire (EPFL)