SKIPP: Enhancing Mobility for Pressure Ulcer Patients with SCI
Need Finding, Kinematic Principles, Design Concept

Solange Cevat¹, Ian Denison, P.T.², H.F. Machiel Van der Loos, Ph.D., P.Eng.³, Mohamed Bouri, Ph.D.¹, Jamie Paik, PhD.¹
¹Ecole Polytechnique Fédérale de Lausanne EPFL, Switzerland, ²Dept. Mechanical Engineering, University of British Columbia Vancouver Canada

Consumer Need

<table>
<thead>
<tr>
<th>Problem</th>
<th>Need</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCI + Pressure ulcer</td>
<td>Avoid use of standard wheelchair for months</td>
<td>Mobility device in prone/kneeling position</td>
</tr>
</tbody>
</table>

Need Finding

- **Improved sociability**
- **Comfort**
- **Ease of Mobility**
- **Safety**
- **Ease of bed/device transfer**

Existing SKIPP Concept

Supported Kneeling Inclined Power Platform

- Kneeling chest up with head support
- Kneeling chest up without head support
- Prone position
- Kneeling chest down

Fits most people with easy and fast adjustability; leased from medical facilities

Issues to be Addressed

- Comfort and Ergonomics
 - Follows human natural motion
 - Provides adjustability
 - Provides unnatural positions
- Safety
 - Prevents pinch device
 - Mounts to a power base
 - Creates no new health issues
- Already addressed
 - Reduces shear
 - Provides handles to adjust position
 - Avoids additional pressure points

Evaluation base on the requirement

- Red = Inadequate
- Orange = Unsatisfactory
- Green = Satisfactory

Quantitative and Qualitative Evaluation

Observation of natural body position and motion on current SKIPP prototype

Requirements

- No shear
- Knee weight shift
- Upright position

- No back curve
- Hip angle adjustability
- Small turning radius

Kinematic Principles

- 45° RCM instead of 90° trunk rotation
- No vertical surface while resting
- Bent legs in rest position
- 45° thigh angle in rest position
- Changing knee contact point

- Easier design
- Better weight repartition
- Small wheelchair footprint
- No back hyperextension
- Better weight shift

SoarFree Concept

<table>
<thead>
<tr>
<th>Function</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Rotation to Move the Thigh (max 90°)</td>
<td>Belt & pinion mechanism to move a rail guided between 4 rollers</td>
</tr>
<tr>
<td>Trunk Rotation (max 45°)</td>
<td>Combining 2 curved racks & 4 pinions to put RCM on hip CR</td>
</tr>
<tr>
<td>Shin Support Flap (max 90°)</td>
<td>Using a worm drive mechanism</td>
</tr>
</tbody>
</table>

Adjustability to the User’s Measurements
- Translation of cushions: Shin cushion in the vertical direction
- Thigh and chest cushions in the horizontal direction

Discussion

Future Work

- User control of actuators
- Cushion translation system
- Mounting to the power base
- User restraint system
- Evaluation of human motion for different body types

Acknowledgments

Jaime Borisoff, Justin Hart, Navid Shirzad

Contact Information:
Solange.Cevat@bluewin.ch
Ian.Denison@ubc.ca
vdl@mech.ubc.ca