Influence of swelling on the fatigue behaviour of a composite hydrogel for disc implant

C. Wyss¹, A. Khoshabeh², B. Caglar¹, D. Pioletti², P.-E. Bourban¹

¹ Laboratory of Polymer and Composite Technology, ² Laboratory of Biomechanical Orthopedics
Ecole Polytechnique Fédérale de Lausanne (EPFL)
celine.wyss@epfl.ch

Keywords: Composite, Hydrogel, Nano-fibrillated cellulose fibres, Fatigue, Mullins effect, Swelling, Microscopy

Introduction

One of the most recent treatment proposed for discogenic lower back pain is to permanently replace the Nucleus Pulposus (NP).

PEGDM hydrogel reinforced with cellulose fibres is proposed as a replacement biomaterial that is injected directly into the degenerated IVD in the liquid form and cured in situ via UV-light irradiation [1].

The reliability of this composite hydrogel under long-term fatigue loading is investigated this study.

Objectives

- Study and quantify the long-term behaviour of the composite hydrogel under cyclic loading.
- Develop a microscopy method to compare qualitatively the NFC fibres morphology into the composite hydrogel at different loading and swelling conditions.

Materials & Methods

Materials

Composite hydrogel: 10 wt.% of 20 kDa Poly(Ethylene Glycol) DiMethacrylate (PEGDM) reinforced with 0.5 wt.% of Nano-Fibrillated Cellulose (NFC)

Neat hydrogel (as a representative of the composite hydrogel's matrix): 10 wt.% of 20 kDa PEGDM

Mechanical testing

Glass container

Transcranial Ultrasound

Sample

Synthesis

0.1 g/mL Isgacure 2959

10 wt.% PEGDM

0.5 wt.% NFC

NFC

Neat

Composite

PBT

UV-light

20 min

30 min

Results & Discussion

High-cycle fatigue test

20% maximum applied strain at 60 Hz

The composite hydrogel withstands the required 10 million cycles.

Addition of NFC fibres provides an increase in elastic modulus by reduction of 10% in the first 10 cycles.

Effect of hydrogel’s hydration state

1. Stiffening induced by swelling: The lower swelling ratio of the composite hydrogel indicates that the NFC network is pre-strained due to swelling. The latter participates in a formation of a more elastically active network that provides an increase of the elastic modulus.

2. Reduced softening in the as-prepared state: NFC fibres into the hydrogel at the as-prepared state are less constrained in the 3D-direction resulting in a decrease of the softening.

(A) A global expansion of the NFC network could be observed at a microscopic scale. Some fibres are slightly extended and their respective surface flattened.

Effect of relaxation

NFC Morphology

A large diversity in size and morphology of NFC fibres reflects the preparation history.

(1) The NFC fibres are composed of bundles of nano-fibres that were not perfectly debranched.

(2) The clouds of NFC are probably constituted of tightly entangled and randomly oriented NFC fibres.

Conclusions

- The composite hydrogel withstands the required 10 million cycles. The partially recoverable softening behaviour similar to the Mullins effect is associated with a gradual disintegration and re-arrangement of the nano-fibrillated cellulose (NFC) network.
- The swelling pre-strains the NFC network and thus participates to the formation of a more elastically active network providing an increase of the apparent elastic modulus.
- An imaging method was developed that enables to observe the NFC fibres morphology into the composite hydrogel at its different stages that it is faced during the mechanical testing.

Perspectives

- Confined mechanical testing
- Effect of drying rate and dryness degree
- Effect of multiple re-hydration cycles
- Effect of NFC fibres dispersion

References

Acknowledgements

The authors appreciate the support of Swiss National Science Foundation and the collaboration with EPFL-BIOP, EPFL-LBD, EPFL-LAPD and EMPA.