Materials and transport properties for membranes in new energy storage devices

Alexis M. Perakis, Dr. Alan C. West, Dr. Stefano Mischler

1Dept. of Chemical Engineering, Columbia University, USA, 2Dept. of Materials Science and Engineering, EPFL, CH

Motivation

Microphase segregation: To circumvent the brittleness of ionic polymers, distinct phases can be combined to decouple desirable properties:
- Mechanical stability (e.g. as a discrete structure)
- Ionic conduction (e.g. as matrix)

Purpose of study: 1) Explore ion selectivity for polycyclopropenium (PCPCy) polymers using a novel flow cell characterisation technique 2) Optimize sample preparation by methodical study of thermal properties.

Membrane processing

Sample preparation methods: 1) PCPCy was drop casted onto a porous substrate prior to characterization, to provide mechanical stability.
2) To optimize processing conditions and investigate the feasibility of a free standing film, the glass transition temperature \(T_g \) of PCPCy was recorded using Differential Scanning Calorimetry. BMimTFSI (ionic liquid) and DMSO (solvent) were used as dopants to reduce the \(T_g \) and thus the polymer's brittleness.

Results: Two distinct regimes (\(T_g \) reduction effects with increasing wt%) are observed separated by a cross-over region. They are associated to:
1. screening of electrostatic interactions
2. polymer chain solvation

Materials & microstructure

Materials characterized:
- Nafion®117 (commercial)
- Snowpure®-200 (commercial)
- PCPCy homopolymer (synthesized)
- PS-b-PCPCy diblock copolymer (synthesized)

Relevant PCPCy material length scales:
1) Ion vicinity: Delocalized nature of cyclopropenium ionic charge
2) Microstructure: Polystyrene (PS) block introduced for mechanical stability (i.e. microphase segregation)

PCPCy structure upon BMimTFSI doping:
- No difference observed with Wide Angle X-ray Scattering up to 10 wt%
- Ionic aggregate structure is not modified
- Ionic liquid is believed to intercalate into PCPCy

Transport properties – Ion selectivity

I. Novel technique: faster & more accurate

Method: Selectivity of ionic polymer membranes is assessed by measuring the transference number \(t_z \). A method relying on two flowing electrolytes on either side of a membrane was implemented, where the flux of a particular ion is monitored with applied current.

The transference number can in this case be expressed as follows with \(z \) the valency, c the concentration and D the diffusivity of ions:

\[t_z = \frac{z^2 D c}{z D c + z^2 D c} \]

II. Calibration

- Nafion®117 was used to prove the validity of the novel characterization method
- Snowpure®-200 served as a reference for the synthesized membranes

<table>
<thead>
<tr>
<th>Membrane Selectivity Result</th>
<th>PCPCy Cation</th>
<th>PCPCy Anion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nafion®117</td>
<td>(t_z = 0.94)</td>
<td></td>
</tr>
<tr>
<td>Snowpure®-200</td>
<td>(t_z = 0.01)</td>
<td>(t_z = 0.10)</td>
</tr>
<tr>
<td>PCPCy</td>
<td>(t_z = 0.38)</td>
<td></td>
</tr>
</tbody>
</table>

III. Novel materials

- PCPCy was tested to evaluate the selectivity of a polymer bearing a delocalized charge
- PS-b-PCPCy was characterized to investigate the effect of microphase segregation on the selectivity of the system

Conclusions

- A novel method for transference number measurement was demonstrated on Nafion®117
- PCPCy displays lower selectivity compared to commercial products, possibly due to sample preparation and insufficient functionalization
- The reduced fraction of charged phase in PS-b-PCPCy leads to decreased selectivity despite improved mechanical properties
- Brittleness of PCPCy was successfully reduced upon doping